Entrer un problème...
Algèbre Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme .
Étape 2.1.3
Réécrivez comme .
Étape 2.1.4
Factorisez.
Étape 2.1.4.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.4.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.4.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.4.2.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2.2
Simplifiez le côté gauche.
Étape 2.4.2.2.2.1
Annulez le facteur commun de .
Étape 2.4.2.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.2.1.2
Divisez par .
Étape 2.4.2.2.3
Simplifiez le côté droit.
Étape 2.4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Étape 2.5.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.5.2.2.1
Divisez chaque terme dans par .
Étape 2.5.2.2.2
Simplifiez le côté gauche.
Étape 2.5.2.2.2.1
Annulez le facteur commun de .
Étape 2.5.2.2.2.1.1
Annulez le facteur commun.
Étape 2.5.2.2.2.1.2
Divisez par .
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4