Entrer un problème...
Algèbre Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Factorisez le côté gauche de l’équation.
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.1.1
Factorisez à partir de .
Étape 2.1.1.2
Factorisez à partir de .
Étape 2.1.1.3
Factorisez à partir de .
Étape 2.1.2
Réécrivez comme .
Étape 2.1.3
Réécrivez comme .
Étape 2.1.4
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.5
Factorisez.
Étape 2.1.5.1
Simplifiez
Étape 2.1.5.1.1
Réécrivez comme .
Étape 2.1.5.1.2
Factorisez.
Étape 2.1.5.1.2.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 2.1.5.1.2.2
Supprimez les parenthèses inutiles.
Étape 2.1.5.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.4.2.3
Réécrivez comme .
Étape 2.4.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.4.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.4.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.5
Définissez égal à et résolvez .
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Soustrayez des deux côtés de l’équation.
Étape 2.6
Définissez égal à et résolvez .
Étape 2.6.1
Définissez égal à .
Étape 2.6.2
Ajoutez aux deux côtés de l’équation.
Étape 2.7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
L’équation est indéfinie là où le dénominateur est égal à , l’argument d’une racine carrée est inférieur à ou l’argument d’un logarithme est inférieur ou égal à .
Étape 4