Entrer un problème...
Algèbre Exemples
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.3
Simplifiez le numérateur.
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Déplacez à gauche de .
Étape 2.3.3
Multipliez par .
Étape 2.3.4
Remettez les termes dans l’ordre.
Étape 2.3.5
Factorisez à l’aide de la méthode AC.
Étape 2.3.5.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.3.5.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Soustrayez des deux côtés de l’équation.
Étape 6
Soustrayez des deux côtés de l’équation.
Étape 7
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 8
Consolidez les solutions.
Étape 9
Étape 9.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 9.2
Soustrayez des deux côtés de l’équation.
Étape 9.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 10
Utilisez chaque racine pour créer des intervalles de test.
Étape 11
Étape 11.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 11.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.1.2
Remplacez par dans l’inégalité d’origine.
Étape 11.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 11.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 11.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.2.2
Remplacez par dans l’inégalité d’origine.
Étape 11.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 11.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 11.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.3.2
Remplacez par dans l’inégalité d’origine.
Étape 11.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 11.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 11.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.4.2
Remplacez par dans l’inégalité d’origine.
Étape 11.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 11.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Étape 12
La solution se compose de tous les intervalles vrais.
ou
Étape 13
Convertissez l’inégalité en une notation d’intervalle.
Étape 14