Algèbre Exemples

Trouver la fonction réciproque f(x) = natural log of 3x
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Pour résoudre , réécrivez l’équation en utilisant les propriétés des logarithmes.
Étape 3.3
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 3.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.1
Réécrivez l’équation comme .
Étape 3.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.1
Divisez chaque terme dans par .
Étape 3.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.4.2.2.1.1
Annulez le facteur commun.
Étape 3.4.2.2.1.2
Divisez par .
Étape 4
Replace with to show the final answer.
Étape 5
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Pour vérifier l’inverse, vérifiez si et .
Étape 5.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.1
Définissez la fonction de résultat composé.
Étape 5.2.2
Évaluez en remplaçant la valeur de par .
Étape 5.2.3
L’élévation à une puissance et log sont des fonctions inverses.
Étape 5.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.2.4.1
Annulez le facteur commun.
Étape 5.2.4.2
Divisez par .
Étape 5.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.1
Définissez la fonction de résultat composé.
Étape 5.3.2
Évaluez en remplaçant la valeur de par .
Étape 5.3.3
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 5.3.3.1
Annulez le facteur commun.
Étape 5.3.3.2
Réécrivez l’expression.
Étape 5.3.4
Utilisez les règles des logarithmes pour retirer de l’exposant.
Étape 5.3.5
Le logarithme naturel de est .
Étape 5.3.6
Multipliez par .
Étape 5.4
Comme et , est l’inverse de .