Algèbre Exemples

Trouver toutes les solutions complexes x^4=1
Étape 1
Soustrayez des deux côtés de l’équation.
Étape 2
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez comme .
Étape 2.2
Réécrivez comme .
Étape 2.3
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez comme .
Étape 2.4.2
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.4.2.2
Supprimez les parenthèses inutiles.
Étape 3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 4.2.3
Réécrivez comme .
Étape 4.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez égal à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 6
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Définissez égal à .
Étape 6.2
Ajoutez aux deux côtés de l’équation.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.