Algèbre Exemples

Trouver les foyers (x^2)/40-(y^2)/81=1
Étape 1
Simplifiez chaque terme de l’équation afin de définir le côté droit égal à . La forme normalisée d’une ellipse ou hyperbole nécessite que le côté droit de l’équation soit .
Étape 2
C’est la forme d’une hyperbole. Utilisez cette forme pour déterminer les valeurs utilisées pour déterminer les sommets et les asymptotes de l’hyperbole.
Étape 3
Faites correspondre les valeurs dans cette hyperbole avec celles de la forme normalisée. La variable représente le décalage x par rapport à l’origine, représente le décalage y par rapport à l’origine, .
Étape 4
Déterminez , la distance du centre à un foyer.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Déterminez la distance du centre à un foyer de l’hyperbole en utilisant la formule suivante.
Étape 4.2
Remplacez les valeurs de et dans la formule.
Étape 4.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1.1
Appliquez la règle de produit à .
Étape 4.3.1.2
Élevez à la puissance .
Étape 4.3.2
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.1
Utilisez pour réécrire comme .
Étape 4.3.2.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.3.2.3
Associez et .
Étape 4.3.2.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.2.4.1
Annulez le facteur commun.
Étape 4.3.2.4.2
Réécrivez l’expression.
Étape 4.3.2.5
Évaluez l’exposant.
Étape 4.3.3
Simplifiez l’expression.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Multipliez par .
Étape 4.3.3.2
Élevez à la puissance .
Étape 4.3.3.3
Additionnez et .
Étape 4.3.3.4
Réécrivez comme .
Étape 4.3.4
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 5
Déterminez les foyers.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Le premier foyer d’une hyperbole peut être déterminé en ajoutant à .
Étape 5.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 5.3
Le deuxième foyer d’une hyperbole peut être déterminé en soustrayant à .
Étape 5.4
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 5.5
Les foyers d’une hyperbole suivent la forme de . Les hyperboles ont deux foyers.
Étape 6