Entrer un problème...
Algèbre Exemples
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Remplacez dans l’équation. Cela facilitera l’utilisation de la formule quadratique.
Étape 3
Étape 3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.2
Écrivez la forme factorisée avec ces entiers.
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Étape 5.1
Définissez égal à .
Étape 5.2
Ajoutez aux deux côtés de l’équation.
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Soustrayez des deux côtés de l’équation.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Remplacez à nouveau la valeur réelle de dans l’équation résolue.
Étape 9
Résolvez la première équation pour .
Étape 10
Étape 10.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 10.2
Simplifiez .
Étape 10.2.1
Réécrivez comme .
Étape 10.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 10.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 10.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 10.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 10.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 11
Résolvez la deuxième équation pour .
Étape 12
Étape 12.1
Supprimez les parenthèses.
Étape 12.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 12.3
Simplifiez .
Étape 12.3.1
Réécrivez comme .
Étape 12.3.2
Réécrivez comme .
Étape 12.3.3
Réécrivez comme .
Étape 12.3.4
Réécrivez comme .
Étape 12.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 12.3.6
Déplacez à gauche de .
Étape 12.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 12.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 12.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 13
La solution à est .
Étape 14