Entrer un problème...
Algèbre Exemples
Étape 1
Convertissez l’inégalité en une équation.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Étape 3.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 3.2
Écrivez la forme factorisée avec ces entiers.
Étape 4
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 5
Étape 5.1
Définissez égal à .
Étape 5.2
Soustrayez des deux côtés de l’équation.
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Soustrayez des deux côtés de l’équation.
Étape 7
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 8
Utilisez chaque racine pour créer des intervalles de test.
Étape 9
Étape 9.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 9.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.1.2
Remplacez par dans l’inégalité d’origine.
Étape 9.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 9.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 9.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.2.2
Remplacez par dans l’inégalité d’origine.
Étape 9.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
True
True
Étape 9.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 9.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.3.2
Remplacez par dans l’inégalité d’origine.
Étape 9.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
False
False
Étape 9.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 10
La solution se compose de tous les intervalles vrais.
Étape 11
Convertissez l’inégalité en une notation d’intervalle.
Étape 12