Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Simplifiez chaque terme.
Étape 1.2.1
Divisez la fraction en deux fractions.
Étape 1.2.2
Annulez le facteur commun de .
Étape 1.2.2.1
Annulez le facteur commun.
Étape 1.2.2.2
Réécrivez l’expression.
Étape 1.3
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.4
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 1.5
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 1.5.1
Multipliez par .
Étape 1.5.2
Multipliez par .
Étape 1.5.3
Multipliez par .
Étape 1.5.4
Multipliez par .
Étape 1.6
Associez les numérateurs sur le dénominateur commun.
Étape 1.7
Simplifiez le numérateur.
Étape 1.7.1
Multipliez par .
Étape 1.7.2
Soustrayez de .
Étape 1.8
Placez le signe moins devant la fraction.
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 2.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 2.4
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.5
n’a pas de facteur hormis et .
est un nombre premier
Étape 2.6
a des facteurs de et .
Étape 2.7
Multipliez par .
Étape 2.8
Le facteur pour est lui-même.
se produit fois.
Étape 2.9
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2.10
Le plus petit multiple commun pour est la partie numérique multipliée par la partie variable.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2
Annulez le facteur commun de .
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Factorisez à partir de .
Étape 3.2.2.3
Annulez le facteur commun.
Étape 3.2.2.4
Réécrivez l’expression.
Étape 3.2.3
Associez et .
Étape 3.2.4
Multipliez par .
Étape 3.2.5
Annulez le facteur commun de .
Étape 3.2.5.1
Annulez le facteur commun.
Étape 3.2.5.2
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Simplifiez chaque terme.
Étape 3.3.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.3.1.2
Annulez le facteur commun de .
Étape 3.3.1.2.1
Factorisez à partir de .
Étape 3.3.1.2.2
Factorisez à partir de .
Étape 3.3.1.2.3
Annulez le facteur commun.
Étape 3.3.1.2.4
Réécrivez l’expression.
Étape 3.3.1.3
Associez et .
Étape 3.3.1.4
Multipliez par .
Étape 3.3.1.5
Annulez le facteur commun de .
Étape 3.3.1.5.1
Annulez le facteur commun.
Étape 3.3.1.5.2
Réécrivez l’expression.
Étape 3.3.1.6
Annulez le facteur commun de .
Étape 3.3.1.6.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.3.1.6.2
Factorisez à partir de .
Étape 3.3.1.6.3
Annulez le facteur commun.
Étape 3.3.1.6.4
Réécrivez l’expression.
Étape 4
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 4.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.2.2
Soustrayez de .
Étape 4.3
Divisez chaque terme dans par et simplifiez.
Étape 4.3.1
Divisez chaque terme dans par .
Étape 4.3.2
Simplifiez le côté gauche.
Étape 4.3.2.1
Annulez le facteur commun de .
Étape 4.3.2.1.1
Annulez le facteur commun.
Étape 4.3.2.1.2
Divisez par .
Étape 4.3.3
Simplifiez le côté droit.
Étape 4.3.3.1
La division de deux valeurs négatives produit une valeur positive.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :