Algèbre Exemples

Tracer y=-x^2+6x-4
Étape 1
Déterminez les probabilités de la parabole donnée.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez l’équation en forme de sommet.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Complétez le carré pour .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 1.1.1.2
Étudiez la forme du sommet d’une parabole.
Étape 1.1.1.3
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.1
Remplacez les valeurs de et dans la formule .
Étape 1.1.1.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.2.1
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.3.2.1.1
Factorisez à partir de .
Étape 1.1.1.3.2.1.2
Déplacez le moins un du dénominateur de .
Étape 1.1.1.3.2.2
Multipliez par .
Étape 1.1.1.4
Déterminez la valeur de en utilisant la formule .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.1
Remplacez les valeurs de , et dans la formule .
Étape 1.1.1.4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.4.2.1.1
Élevez à la puissance .
Étape 1.1.1.4.2.1.2
Multipliez par .
Étape 1.1.1.4.2.1.3
Divisez par .
Étape 1.1.1.4.2.1.4
Multipliez par .
Étape 1.1.1.4.2.2
Additionnez et .
Étape 1.1.1.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 1.1.2
Définissez égal au nouveau côté droit.
Étape 1.2
Utilisez la forme du sommet, , pour déterminer les valeurs de , et .
Étape 1.3
Comme la valeur de est négative, la parabole ouvre vers le bas.
ouvre vers le bas
Étape 1.4
Déterminez le sommet .
Étape 1.5
Déterminez , la distance du sommet au foyer.
Appuyez ici pour voir plus d’étapes...
Étape 1.5.1
Déterminez la distance du sommet à un foyer de la parabole en utilisant la formule suivante.
Étape 1.5.2
Remplacez la valeur de dans la fonction.
Étape 1.5.3
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 1.5.3.1
Réécrivez comme .
Étape 1.5.3.2
Placez le signe moins devant la fraction.
Étape 1.6
Déterminez le foyer.
Appuyez ici pour voir plus d’étapes...
Étape 1.6.1
Le foyer d’une parabole peut être trouvé en ajoutant à la coordonnée y si la parabole ouvre vers le haut ou vers le bas.
Étape 1.6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 1.7
Déterminez l’axe de symétrie en trouvant la droite qui passe par le sommet et le foyer.
Étape 1.8
Déterminez la directrice.
Appuyez ici pour voir plus d’étapes...
Étape 1.8.1
La directrice d’une parabole est la droite horizontale déterminée en soustrayant de la coordonnée y du sommet si la parabole ouvre vers le haut ou vers le bas.
Étape 1.8.2
Remplacez les valeurs connues de et dans la formule et simplifiez.
Étape 1.9
Utilisez les propriétés de la parabole pour analyser la parabole et la représenter sous forme graphique.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 2
Sélectionnez quelques valeurs et insérez-les dans l’équation pour déterminer les valeurs correspondantes. Les valeurs devraient être sélectionnées autour du sommet.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Remplacez la variable par dans l’expression.
Étape 2.2
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1.1
Élevez à la puissance .
Étape 2.2.1.2
Multipliez par .
Étape 2.2.1.3
Multipliez par .
Étape 2.2.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Additionnez et .
Étape 2.2.2.2
Soustrayez de .
Étape 2.2.3
La réponse finale est .
Étape 2.3
La valeur sur est .
Étape 2.4
Remplacez la variable par dans l’expression.
Étape 2.5
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1.1
Un à n’importe quelle puissance est égal à un.
Étape 2.5.1.2
Multipliez par .
Étape 2.5.1.3
Multipliez par .
Étape 2.5.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Additionnez et .
Étape 2.5.2.2
Soustrayez de .
Étape 2.5.3
La réponse finale est .
Étape 2.6
La valeur sur est .
Étape 2.7
Remplacez la variable par dans l’expression.
Étape 2.8
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.1.1
Élevez à la puissance .
Étape 2.8.1.2
Multipliez par .
Étape 2.8.1.3
Multipliez par .
Étape 2.8.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 2.8.2.1
Additionnez et .
Étape 2.8.2.2
Soustrayez de .
Étape 2.8.3
La réponse finale est .
Étape 2.9
La valeur sur est .
Étape 2.10
Remplacez la variable par dans l’expression.
Étape 2.11
Simplifiez le résultat.
Appuyez ici pour voir plus d’étapes...
Étape 2.11.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.11.1.1
Élevez à la puissance .
Étape 2.11.1.2
Multipliez par .
Étape 2.11.1.3
Multipliez par .
Étape 2.11.2
Simplifiez en ajoutant et en soustrayant.
Appuyez ici pour voir plus d’étapes...
Étape 2.11.2.1
Additionnez et .
Étape 2.11.2.2
Soustrayez de .
Étape 2.11.3
La réponse finale est .
Étape 2.12
La valeur sur est .
Étape 2.13
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Étape 3
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Direction : ouvre vers le bas
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 4