Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Étape 1.2.1
Simplifiez chaque terme.
Étape 1.2.1.1
Annulez le facteur commun de .
Étape 1.2.1.1.1
Annulez le facteur commun.
Étape 1.2.1.1.2
Divisez par .
Étape 1.2.1.2
Annulez le facteur commun à et .
Étape 1.2.1.2.1
Factorisez à partir de .
Étape 1.2.1.2.2
Annulez les facteurs communs.
Étape 1.2.1.2.2.1
Factorisez à partir de .
Étape 1.2.1.2.2.2
Annulez le facteur commun.
Étape 1.2.1.2.2.3
Réécrivez l’expression.
Étape 2
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 3
Ajoutez le terme de chaque côté de l’équation.
Étape 4
Étape 4.1
Simplifiez le côté gauche.
Étape 4.1.1
Simplifiez chaque terme.
Étape 4.1.1.1
Appliquez la règle de produit à .
Étape 4.1.1.2
Élevez à la puissance .
Étape 4.1.1.3
Élevez à la puissance .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Simplifiez chaque terme.
Étape 4.2.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Élevez à la puissance .
Étape 4.2.1.1.3
Élevez à la puissance .
Étape 4.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 4.2.1.3.1
Multipliez par .
Étape 4.2.1.3.2
Multipliez par .
Étape 4.2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.5
Simplifiez le numérateur.
Étape 4.2.1.5.1
Multipliez par .
Étape 4.2.1.5.2
Additionnez et .
Étape 5
Factorisez le carré trinomial parfait en .
Étape 6
Étape 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2
Simplifiez .
Étape 6.2.1
Réécrivez comme .
Étape 6.2.2
Simplifiez le numérateur.
Étape 6.2.2.1
Réécrivez comme .
Étape 6.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.2.3
Simplifiez le dénominateur.
Étape 6.2.3.1
Réécrivez comme .
Étape 6.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 6.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 6.3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 6.3.2.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.2.3
Soustrayez de .
Étape 6.3.2.4
Annulez le facteur commun à et .
Étape 6.3.2.4.1
Factorisez à partir de .
Étape 6.3.2.4.2
Annulez les facteurs communs.
Étape 6.3.2.4.2.1
Factorisez à partir de .
Étape 6.3.2.4.2.2
Annulez le facteur commun.
Étape 6.3.2.4.2.3
Réécrivez l’expression.
Étape 6.3.3
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 6.3.4
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 6.3.4.1
Soustrayez des deux côtés de l’équation.
Étape 6.3.4.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.3.4.3
Soustrayez de .
Étape 6.3.4.4
Annulez le facteur commun à et .
Étape 6.3.4.4.1
Factorisez à partir de .
Étape 6.3.4.4.2
Annulez les facteurs communs.
Étape 6.3.4.4.2.1
Factorisez à partir de .
Étape 6.3.4.4.2.2
Annulez le facteur commun.
Étape 6.3.4.4.2.3
Réécrivez l’expression.
Étape 6.3.4.5
Placez le signe moins devant la fraction.
Étape 6.3.5
La solution complète est le résultat des parties positive et négative de la solution.