Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Since contains both numbers and variables, there are two steps to find the LCM. Find LCM for the numeric part then find LCM for the variable part .
Étape 1.3
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 1.4
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 1.5
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 1.6
Le facteur pour est lui-même.
se produit fois.
Étape 1.7
Les facteurs pour sont , qui correspond à multipliés entre eux fois.
se produit fois.
Étape 1.8
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 1.9
Multipliez par .
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Annulez le facteur commun de .
Étape 2.2.1.1
Factorisez à partir de .
Étape 2.2.1.2
Annulez le facteur commun.
Étape 2.2.1.3
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Simplifiez chaque terme.
Étape 2.3.1.1
Annulez le facteur commun de .
Étape 2.3.1.1.1
Factorisez à partir de .
Étape 2.3.1.1.2
Annulez le facteur commun.
Étape 2.3.1.1.3
Réécrivez l’expression.
Étape 2.3.1.2
Annulez le facteur commun de .
Étape 2.3.1.2.1
Annulez le facteur commun.
Étape 2.3.1.2.2
Réécrivez l’expression.
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Soustrayez de .
Étape 3.2
Comme , il n’y a aucune solution.
Aucune solution
Aucune solution