Algèbre Exemples

Résoudre en utilisant la formule quadratique (m+1)(2m+7)=3(m+4)-9
Étape 1
Déplacez tous les termes du côté gauche de l’équation et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1
Développez à l’aide de la méthode FOIL.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.1.1
Appliquez la propriété distributive.
Étape 1.1.1.1.2
Appliquez la propriété distributive.
Étape 1.1.1.1.3
Appliquez la propriété distributive.
Étape 1.1.1.2
Simplifiez et associez les termes similaires.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.1.1.2.1.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1.2.1.2.1
Déplacez .
Étape 1.1.1.2.1.2.2
Multipliez par .
Étape 1.1.1.2.1.3
Déplacez à gauche de .
Étape 1.1.1.2.1.4
Multipliez par .
Étape 1.1.1.2.1.5
Multipliez par .
Étape 1.1.1.2.2
Additionnez et .
Étape 1.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1.1
Appliquez la propriété distributive.
Étape 1.2.1.1.2
Multipliez par .
Étape 1.2.1.2
Soustrayez de .
Étape 1.3
Déplacez toutes les expressions du côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.3.1
Soustrayez des deux côtés de l’équation.
Étape 1.3.2
Soustrayez des deux côtés de l’équation.
Étape 1.4
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.4.1
Soustrayez de .
Étape 1.4.2
Soustrayez de .
Étape 2
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Élevez à la puissance .
Étape 4.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1.2.1
Multipliez par .
Étape 4.1.2.2
Multipliez par .
Étape 4.1.3
Soustrayez de .
Étape 4.1.4
Réécrivez comme .
Étape 4.1.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.2
Multipliez par .
Étape 4.3
Simplifiez .
Étape 5
La réponse finale est la combinaison des deux solutions.