Entrer un problème...
Algèbre Exemples
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Étape 2.1
Divisez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Annulez le facteur commun de .
Étape 2.2.1.1.1
Annulez le facteur commun.
Étape 2.2.1.1.2
Divisez par .
Étape 2.2.1.2
Placez le signe moins devant la fraction.
Étape 3
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 4
Ajoutez le terme de chaque côté de l’équation.
Étape 5
Étape 5.1
Simplifiez le côté gauche.
Étape 5.1.1
Simplifiez chaque terme.
Étape 5.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 5.1.1.1.1
Appliquez la règle de produit à .
Étape 5.1.1.1.2
Appliquez la règle de produit à .
Étape 5.1.1.2
Élevez à la puissance .
Étape 5.1.1.3
Multipliez par .
Étape 5.1.1.4
Élevez à la puissance .
Étape 5.1.1.5
Élevez à la puissance .
Étape 5.2
Simplifiez le côté droit.
Étape 5.2.1
Simplifiez .
Étape 5.2.1.1
Simplifiez chaque terme.
Étape 5.2.1.1.1
Utilisez la règle de puissance pour distribuer l’exposant.
Étape 5.2.1.1.1.1
Appliquez la règle de produit à .
Étape 5.2.1.1.1.2
Appliquez la règle de produit à .
Étape 5.2.1.1.2
Élevez à la puissance .
Étape 5.2.1.1.3
Multipliez par .
Étape 5.2.1.1.4
Élevez à la puissance .
Étape 5.2.1.1.5
Élevez à la puissance .
Étape 5.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 5.2.1.3
Écrivez chaque expression avec un dénominateur commun , en multipliant chacun par un facteur approprié de .
Étape 5.2.1.3.1
Multipliez par .
Étape 5.2.1.3.2
Multipliez par .
Étape 5.2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 5.2.1.5
Additionnez et .
Étape 6
Factorisez le carré trinomial parfait en .
Étape 7
Étape 7.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 7.2
Simplifiez .
Étape 7.2.1
Réécrivez comme .
Étape 7.2.2
Simplifiez le dénominateur.
Étape 7.2.2.1
Réécrivez comme .
Étape 7.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 7.3
Ajoutez aux deux côtés de l’équation.
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :