Entrer un problème...
Algèbre Exemples
,
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’équation.
Étape 1.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 1.3
Simplifiez .
Étape 1.3.1
Réécrivez comme .
Étape 1.3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 1.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2
Étape 2.1
Remplacez toutes les occurrences de par dans chaque équation.
Étape 2.1.1
Remplacez toutes les occurrences de dans par .
Étape 2.1.2
Simplifiez le côté gauche.
Étape 2.1.2.1
Simplifiez .
Étape 2.1.2.1.1
Simplifiez chaque terme.
Étape 2.1.2.1.1.1
Réécrivez comme .
Étape 2.1.2.1.1.1.1
Utilisez pour réécrire comme .
Étape 2.1.2.1.1.1.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.1.2.1.1.1.3
Associez et .
Étape 2.1.2.1.1.1.4
Annulez le facteur commun de .
Étape 2.1.2.1.1.1.4.1
Annulez le facteur commun.
Étape 2.1.2.1.1.1.4.2
Réécrivez l’expression.
Étape 2.1.2.1.1.1.5
Simplifiez
Étape 2.1.2.1.1.2
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.1.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.1.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.1.1.2.3
Appliquez la propriété distributive.
Étape 2.1.2.1.1.3
Simplifiez et associez les termes similaires.
Étape 2.1.2.1.1.3.1
Simplifiez chaque terme.
Étape 2.1.2.1.1.3.1.1
Multipliez par .
Étape 2.1.2.1.1.3.1.2
Multipliez par .
Étape 2.1.2.1.1.3.1.3
Déplacez à gauche de .
Étape 2.1.2.1.1.3.1.4
Réécrivez en utilisant la commutativité de la multiplication.
Étape 2.1.2.1.1.3.1.5
Multipliez par en additionnant les exposants.
Étape 2.1.2.1.1.3.1.5.1
Déplacez .
Étape 2.1.2.1.1.3.1.5.2
Multipliez par .
Étape 2.1.2.1.1.3.2
Additionnez et .
Étape 2.1.2.1.1.3.3
Additionnez et .
Étape 2.1.2.1.1.4
Réécrivez comme .
Étape 2.1.2.1.1.5
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.1.1.5.1
Appliquez la propriété distributive.
Étape 2.1.2.1.1.5.2
Appliquez la propriété distributive.
Étape 2.1.2.1.1.5.3
Appliquez la propriété distributive.
Étape 2.1.2.1.1.6
Simplifiez et associez les termes similaires.
Étape 2.1.2.1.1.6.1
Simplifiez chaque terme.
Étape 2.1.2.1.1.6.1.1
Multipliez par .
Étape 2.1.2.1.1.6.1.2
Déplacez à gauche de .
Étape 2.1.2.1.1.6.1.3
Réécrivez comme .
Étape 2.1.2.1.1.6.1.4
Réécrivez comme .
Étape 2.1.2.1.1.6.1.5
Multipliez par .
Étape 2.1.2.1.1.6.2
Soustrayez de .
Étape 2.1.2.1.2
Simplifiez en ajoutant des termes.
Étape 2.1.2.1.2.1
Associez les termes opposés dans .
Étape 2.1.2.1.2.1.1
Additionnez et .
Étape 2.1.2.1.2.1.2
Additionnez et .
Étape 2.1.2.1.2.2
Additionnez et .
Étape 2.2
Résolvez dans .
Étape 2.2.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 2.2.1.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.1.2
Soustrayez de .
Étape 2.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.2.1
Divisez chaque terme dans par .
Étape 2.2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.2.1.2
Divisez par .
Étape 2.2.2.3
Simplifiez le côté droit.
Étape 2.2.2.3.1
Divisez par .
Étape 2.3
Remplacez toutes les occurrences de par dans chaque équation.
Étape 2.3.1
Remplacez toutes les occurrences de dans par .
Étape 2.3.2
Simplifiez .
Étape 2.3.2.1
Simplifiez le côté gauche.
Étape 2.3.2.1.1
Supprimez les parenthèses.
Étape 2.3.2.2
Simplifiez le côté droit.
Étape 2.3.2.2.1
Simplifiez .
Étape 2.3.2.2.1.1
Additionnez et .
Étape 2.3.2.2.1.2
Multipliez par .
Étape 2.3.2.2.1.3
Soustrayez de .
Étape 2.3.2.2.1.4
Multipliez par .
Étape 2.3.2.2.1.5
Réécrivez comme .
Étape 2.3.2.2.1.6
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 4
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 5