Algèbre Exemples

Résoudre en complétant le carré x^2+3x-9=0
Étape 1
Ajoutez aux deux côtés de l’équation.
Étape 2
Pour créer un carré trinomial du côté gauche de l’équation, trouvez une valeur égale au carré de la moitié de .
Étape 3
Ajoutez le terme de chaque côté de l’équation.
Étape 4
Simplifiez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1.1.1
Appliquez la règle de produit à .
Étape 4.1.1.2
Élevez à la puissance .
Étape 4.1.1.3
Élevez à la puissance .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1.1
Appliquez la règle de produit à .
Étape 4.2.1.1.2
Élevez à la puissance .
Étape 4.2.1.1.3
Élevez à la puissance .
Étape 4.2.1.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 4.2.1.3
Associez et .
Étape 4.2.1.4
Associez les numérateurs sur le dénominateur commun.
Étape 4.2.1.5
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.5.1
Multipliez par .
Étape 4.2.1.5.2
Additionnez et .
Étape 5
Factorisez le carré trinomial parfait en .
Étape 6
Résolvez l’équation pour .
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 6.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Réécrivez comme .
Étape 6.2.2
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1.1
Factorisez à partir de .
Étape 6.2.2.1.2
Réécrivez comme .
Étape 6.2.2.2
Extrayez les termes de sous le radical.
Étape 6.2.3
Simplifiez le dénominateur.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.3.1
Réécrivez comme .
Étape 6.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 6.3
Soustrayez des deux côtés de l’équation.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :