Algèbre Exemples

Resolva para x base logarithmique x de 64=2
Étape 1
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Réécrivez comme .
Étape 2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.3
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Excluez les solutions qui ne rendent pas vrai.