Entrer un problème...
Algèbre Exemples
Étape 1
Comme le radical est du côté droit de l’équation, inversez les côtés afin de le placer du côté gauche de l’équation.
Étape 2
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 3
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Simplifiez .
Étape 3.2.1.1
Multipliez les exposants dans .
Étape 3.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.1.1.2
Annulez le facteur commun de .
Étape 3.2.1.1.2.1
Annulez le facteur commun.
Étape 3.2.1.1.2.2
Réécrivez l’expression.
Étape 3.2.1.2
Simplifiez
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Multipliez les exposants dans .
Étape 3.3.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.1.2
Multipliez par .
Étape 4
Étape 4.1
Soustrayez des deux côtés de l’équation.
Étape 4.2
Factorisez le côté gauche de l’équation.
Étape 4.2.1
Factorisez à partir de .
Étape 4.2.1.1
Élevez à la puissance .
Étape 4.2.1.2
Factorisez à partir de .
Étape 4.2.1.3
Factorisez à partir de .
Étape 4.2.1.4
Factorisez à partir de .
Étape 4.2.2
Réécrivez comme .
Étape 4.2.3
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la différence des cubes, où et .
Étape 4.2.4
Factorisez.
Étape 4.2.4.1
Simplifiez
Étape 4.2.4.1.1
Un à n’importe quelle puissance est égal à un.
Étape 4.2.4.1.2
Multipliez par .
Étape 4.2.4.2
Supprimez les parenthèses inutiles.
Étape 4.3
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.4
Définissez égal à .
Étape 4.5
Définissez égal à et résolvez .
Étape 4.5.1
Définissez égal à .
Étape 4.5.2
Résolvez pour .
Étape 4.5.2.1
Soustrayez des deux côtés de l’équation.
Étape 4.5.2.2
Divisez chaque terme dans par et simplifiez.
Étape 4.5.2.2.1
Divisez chaque terme dans par .
Étape 4.5.2.2.2
Simplifiez le côté gauche.
Étape 4.5.2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 4.5.2.2.2.2
Divisez par .
Étape 4.5.2.2.3
Simplifiez le côté droit.
Étape 4.5.2.2.3.1
Divisez par .
Étape 4.6
Définissez égal à et résolvez .
Étape 4.6.1
Définissez égal à .
Étape 4.6.2
Résolvez pour .
Étape 4.6.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 4.6.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 4.6.2.3
Simplifiez
Étape 4.6.2.3.1
Simplifiez le numérateur.
Étape 4.6.2.3.1.1
Un à n’importe quelle puissance est égal à un.
Étape 4.6.2.3.1.2
Multipliez .
Étape 4.6.2.3.1.2.1
Multipliez par .
Étape 4.6.2.3.1.2.2
Multipliez par .
Étape 4.6.2.3.1.3
Soustrayez de .
Étape 4.6.2.3.1.4
Réécrivez comme .
Étape 4.6.2.3.1.5
Réécrivez comme .
Étape 4.6.2.3.1.6
Réécrivez comme .
Étape 4.6.2.3.2
Multipliez par .
Étape 4.6.2.4
La réponse finale est la combinaison des deux solutions.
Étape 4.7
La solution finale est l’ensemble des valeurs qui rendent vraie.