Entrer un problème...
Algèbre Exemples
Étape 1
Associez et .
Étape 2
Étape 2.1
Réécrivez l’équation en forme de sommet.
Étape 2.1.1
Complétez le carré pour .
Étape 2.1.1.1
Utilisez la forme pour déterminer les valeurs de , et .
Étape 2.1.1.2
Étudiez la forme du sommet d’une parabole.
Étape 2.1.1.3
Déterminez la valeur de en utilisant la formule .
Étape 2.1.1.3.1
Remplacez les valeurs de et dans la formule .
Étape 2.1.1.3.2
Simplifiez le côté droit.
Étape 2.1.1.3.2.1
Annulez le facteur commun à et .
Étape 2.1.1.3.2.1.1
Factorisez à partir de .
Étape 2.1.1.3.2.1.2
Annulez les facteurs communs.
Étape 2.1.1.3.2.1.2.1
Annulez le facteur commun.
Étape 2.1.1.3.2.1.2.2
Réécrivez l’expression.
Étape 2.1.1.3.2.2
Multipliez le numérateur par la réciproque du dénominateur.
Étape 2.1.1.3.2.3
Multipliez par .
Étape 2.1.1.4
Déterminez la valeur de en utilisant la formule .
Étape 2.1.1.4.1
Remplacez les valeurs de , et dans la formule .
Étape 2.1.1.4.2
Simplifiez le côté droit.
Étape 2.1.1.4.2.1
Simplifiez chaque terme.
Étape 2.1.1.4.2.1.1
L’élévation de à toute puissance positive produit .
Étape 2.1.1.4.2.1.2
Associez et .
Étape 2.1.1.4.2.1.3
Divisez par .
Étape 2.1.1.4.2.1.4
Divisez par .
Étape 2.1.1.4.2.1.5
Multipliez par .
Étape 2.1.1.4.2.2
Additionnez et .
Étape 2.1.1.5
Remplacez les valeurs de , et dans la forme du sommet .
Étape 2.1.2
Définissez égal au nouveau côté droit.
Étape 2.2
Utilisez la forme du sommet, , pour déterminer les valeurs de , et .
Étape 2.3
Comme la valeur de est positive, la parabole ouvre vers le haut.
ouvre vers le haut
Étape 2.4
Déterminez le sommet .
Étape 2.5
Déterminez , la distance du sommet au foyer.
Étape 2.5.1
Déterminez la distance du sommet à un foyer de la parabole en utilisant la formule suivante.
Étape 2.5.2
Remplacez la valeur de dans la fonction.
Étape 2.5.3
Simplifiez
Étape 2.5.3.1
Associez et .
Étape 2.5.3.2
Simplifiez en divisant des nombres.
Étape 2.5.3.2.1
Divisez par .
Étape 2.5.3.2.2
Divisez par .
Étape 2.6
Déterminez le foyer.
Étape 2.6.1
Le foyer d’une parabole peut être trouvé en ajoutant à la coordonnée y si la parabole ouvre vers le haut ou vers le bas.
Étape 2.6.2
Remplacez les valeurs connues de , et dans la formule et simplifiez.
Étape 2.7
Déterminez l’axe de symétrie en trouvant la droite qui passe par le sommet et le foyer.
Étape 2.8
Déterminez la directrice.
Étape 2.8.1
La directrice d’une parabole est la droite horizontale déterminée en soustrayant de la coordonnée y du sommet si la parabole ouvre vers le haut ou vers le bas.
Étape 2.8.2
Remplacez les valeurs connues de et dans la formule et simplifiez.
Étape 2.9
Utilisez les propriétés de la parabole pour analyser la parabole et la représenter sous forme graphique.
Direction : ouvre vers le haut
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Direction : ouvre vers le haut
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 3
Étape 3.1
Remplacez la variable par dans l’expression.
Étape 3.2
Simplifiez le résultat.
Étape 3.2.1
Élevez à la puissance .
Étape 3.2.2
Divisez par .
Étape 3.2.3
La réponse finale est .
Étape 3.3
La valeur sur est .
Étape 3.4
Remplacez la variable par dans l’expression.
Étape 3.5
Simplifiez le résultat.
Étape 3.5.1
Élevez à la puissance .
Étape 3.5.2
La réponse finale est .
Étape 3.6
La valeur sur est .
Étape 3.7
Remplacez la variable par dans l’expression.
Étape 3.8
Simplifiez le résultat.
Étape 3.8.1
Élevez à la puissance .
Étape 3.8.2
Divisez par .
Étape 3.8.3
La réponse finale est .
Étape 3.9
La valeur sur est .
Étape 3.10
Remplacez la variable par dans l’expression.
Étape 3.11
Simplifiez le résultat.
Étape 3.11.1
Un à n’importe quelle puissance est égal à un.
Étape 3.11.2
La réponse finale est .
Étape 3.12
La valeur sur est .
Étape 3.13
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Étape 4
Représentez la parabole en utilisant ses propriétés et les points sélectionnés.
Direction : ouvre vers le haut
Sommet :
Foyer :
Axe de symétrie :
Directrice :
Étape 5