Algèbre Exemples

Développer à l'aide de la formule du binôme (x-2)^2
(x2)2
Étape 1
Utilisez le théorème de l’expansion binomiale pour déterminer chaque terme. Le théorème du binôme stipule que (a+b)n=nk=0nCk(ankbk).
2k=02!(2k)!k!(x)2k(2)k
Étape 2
Développez la somme.
2!(20)!0!(x)20(2)0+2!(21)!1!(x)21(2)1+2!(22)!2!(x)22(2)2
Étape 3
Simplifiez les exposants pour chaque terme du développement.
1(x)2(2)0+2(x)1(2)1+1(x)0(2)2
Étape 4
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Multipliez (x)2 par 1.
(x)2(2)0+2(x)1(2)1+1(x)0(2)2
Étape 4.2
Tout ce qui est élevé à la puissance 0 est 1.
x21+2(x)1(2)1+1(x)0(2)2
Étape 4.3
Multipliez x2 par 1.
x2+2(x)1(2)1+1(x)0(2)2
Étape 4.4
Simplifiez
x2+2x(2)1+1(x)0(2)2
Étape 4.5
Évaluez l’exposant.
x2+2x2+1(x)0(2)2
Étape 4.6
Multipliez 2 par 2.
x24x+1(x)0(2)2
Étape 4.7
Multipliez (x)0 par 1.
x24x+(x)0(2)2
Étape 4.8
Tout ce qui est élevé à la puissance 0 est 1.
x24x+1(2)2
Étape 4.9
Multipliez (2)2 par 1.
x24x+(2)2
Étape 4.10
Élevez 2 à la puissance 2.
x24x+4
x24x+4
 x2  12  π  xdx