Algèbre Exemples

Trouver les racines (zéros) -x^3+x^2+x-1
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.3
Réécrivez comme .
Étape 2.1.4
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.4.1
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, et .
Étape 2.1.4.2
Supprimez les parenthèses inutiles.
Étape 2.1.5
Associez les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.5.1
Factorisez à partir de .
Étape 2.1.5.2
Réécrivez comme .
Étape 2.1.5.3
Factorisez à partir de .
Étape 2.1.5.4
Réécrivez comme .
Étape 2.1.5.5
Élevez à la puissance .
Étape 2.1.5.6
Élevez à la puissance .
Étape 2.1.5.7
Utilisez la règle de puissance pour associer des exposants.
Étape 2.1.5.8
Additionnez et .
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Définissez le égal à .
Étape 2.3.2.2
Ajoutez aux deux côtés de l’équation.
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3