Algèbre Exemples

Trouver les racines (zéros) M(x)=(2x-3)(x^2+3x+10)
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Définissez égal à .
Étape 2.2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2.2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.1
Divisez chaque terme dans par .
Étape 2.2.2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.2.2.1.2
Divisez par .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.3.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.3.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.3.1.1
Élevez à la puissance .
Étape 2.3.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.3.1.2.1
Multipliez par .
Étape 2.3.2.3.1.2.2
Multipliez par .
Étape 2.3.2.3.1.3
Soustrayez de .
Étape 2.3.2.3.1.4
Réécrivez comme .
Étape 2.3.2.3.1.5
Réécrivez comme .
Étape 2.3.2.3.1.6
Réécrivez comme .
Étape 2.3.2.3.2
Multipliez par .
Étape 2.3.2.4
La réponse finale est la combinaison des deux solutions.
Étape 2.4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3