Algèbre Exemples

Trouver les racines (zéros) x^5+x^3+8x^2+8
Étape 1
Définissez égal à .
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Factorisez le côté gauche de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.1.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.1.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.1.3
Réécrivez comme .
Étape 2.1.4
Les deux termes étant des cubes parfaits, factorisez à l’aide de la formule de la somme des cubes, et .
Étape 2.1.5
Factorisez.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.5.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.1.5.1.1
Multipliez par .
Étape 2.1.5.1.2
Élevez à la puissance .
Étape 2.1.5.2
Supprimez les parenthèses inutiles.
Étape 2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.3.2.2
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Étape 2.3.2.3
Réécrivez comme .
Étape 2.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Soustrayez des deux côtés de l’équation.
Étape 2.5
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.1
Définissez égal à .
Étape 2.5.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.1
Utilisez la formule quadratique pour déterminer les solutions.
Étape 2.5.2.2
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 2.5.2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.3.1.1
Élevez à la puissance .
Étape 2.5.2.3.1.2
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.3.1.2.1
Multipliez par .
Étape 2.5.2.3.1.2.2
Multipliez par .
Étape 2.5.2.3.1.3
Soustrayez de .
Étape 2.5.2.3.1.4
Réécrivez comme .
Étape 2.5.2.3.1.5
Réécrivez comme .
Étape 2.5.2.3.1.6
Réécrivez comme .
Étape 2.5.2.3.1.7
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 2.5.2.3.1.7.1
Factorisez à partir de .
Étape 2.5.2.3.1.7.2
Réécrivez comme .
Étape 2.5.2.3.1.8
Extrayez les termes de sous le radical.
Étape 2.5.2.3.1.9
Déplacez à gauche de .
Étape 2.5.2.3.2
Multipliez par .
Étape 2.5.2.3.3
Simplifiez .
Étape 2.5.2.4
La réponse finale est la combinaison des deux solutions.
Étape 2.6
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3