Algèbre Exemples

Resolva a Inequação para x 5 racine carrée de x+2>17
Étape 1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Soustrayez des deux côtés de l’inégalité.
Étape 1.2
Soustrayez de .
Étape 2
Pour retirer le radical du côté gauche de l’inégalité, élevez au carré les deux côtés de l’inégalité.
Étape 3
Simplifiez chaque côté de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Utilisez pour réécrire comme .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Appliquez la règle de produit à .
Étape 3.2.1.2
Élevez à la puissance .
Étape 3.2.1.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.2.1.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.3.2.1
Annulez le facteur commun.
Étape 3.2.1.3.2.2
Réécrivez l’expression.
Étape 3.2.1.4
Simplifiez
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Élevez à la puissance .
Étape 4
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Divisez par .
Étape 5
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 5.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 6
La solution se compose de tous les intervalles vrais.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 8