Algèbre Exemples

Resolva o Sistema de Equations y=x^2 2y+6=2(x+3)
Étape 1
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Remplacez toutes les occurrences de dans par .
Étape 1.2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1.1
Multipliez par .
Étape 1.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Appliquez la propriété distributive.
Étape 1.2.2.1.2
Multipliez par .
Étape 2
Résolvez dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez des deux côtés de l’équation.
Étape 2.3
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Soustrayez de .
Étape 2.3.2
Additionnez et .
Étape 2.4
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Factorisez à partir de .
Étape 2.4.2
Factorisez à partir de .
Étape 2.4.3
Factorisez à partir de .
Étape 2.5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.6
Définissez égal à .
Étape 2.7
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.7.1
Définissez égal à .
Étape 2.7.2
Ajoutez aux deux côtés de l’équation.
Étape 2.8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 3
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Remplacez toutes les occurrences de dans par .
Étape 3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
L’élévation de à toute puissance positive produit .
Étape 4
Remplacez toutes les occurrences de par dans chaque équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Un à n’importe quelle puissance est égal à un.
Étape 5
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 6
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 7