Algèbre Exemples

Resolva para x x>=2/(x+1)
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Associez les numérateurs sur le dénominateur commun.
Étape 2.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Appliquez la propriété distributive.
Étape 2.3.2
Multipliez par .
Étape 2.3.3
Multipliez par .
Étape 2.3.4
Factorisez à l’aide de la méthode AC.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.4.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.3.4.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Soustrayez des deux côtés de l’équation.
Étape 6
Soustrayez des deux côtés de l’équation.
Étape 7
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 8
Consolidez les solutions.
Étape 9
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 9.2
Soustrayez des deux côtés de l’équation.
Étape 9.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 10
Utilisez chaque racine pour créer des intervalles de test.
Étape 11
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.1.2
Remplacez par dans l’inégalité d’origine.
Étape 11.1.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 11.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.2.2
Remplacez par dans l’inégalité d’origine.
Étape 11.2.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 11.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.3.2
Remplacez par dans l’inégalité d’origine.
Étape 11.3.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 11.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 11.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 11.4.2
Remplacez par dans l’inégalité d’origine.
Étape 11.4.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 11.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Étape 12
La solution se compose de tous les intervalles vrais.
ou
Étape 13
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 14