Entrer un problème...
Algèbre Exemples
Étape 1
Interchangez les variables.
Étape 2
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.2.2.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Étape 2.2.3.1
Déplacez le moins un du dénominateur de .
Étape 2.2.3.2
Réécrivez comme .
Étape 2.3
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 2.4
Simplifiez chaque côté de l’équation.
Étape 2.4.1
Utilisez pour réécrire comme .
Étape 2.4.2
Simplifiez le côté gauche.
Étape 2.4.2.1
Simplifiez .
Étape 2.4.2.1.1
Multipliez les exposants dans .
Étape 2.4.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.4.2.1.1.2
Annulez le facteur commun de .
Étape 2.4.2.1.1.2.1
Annulez le facteur commun.
Étape 2.4.2.1.1.2.2
Réécrivez l’expression.
Étape 2.4.2.1.2
Simplifiez
Étape 2.4.3
Simplifiez le côté droit.
Étape 2.4.3.1
Simplifiez .
Étape 2.4.3.1.1
Appliquez la règle de produit à .
Étape 2.4.3.1.2
Élevez à la puissance .
Étape 2.4.3.1.3
Multipliez par .
Étape 2.5
Soustrayez des deux côtés de l’équation.
Étape 3
Remplacez par pour montrer la réponse finale.
Étape 4
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Simplifiez chaque terme.
Étape 4.2.3.1
Appliquez la règle de produit à .
Étape 4.2.3.2
Élevez à la puissance .
Étape 4.2.3.3
Multipliez par .
Étape 4.2.3.4
Réécrivez comme .
Étape 4.2.3.4.1
Utilisez pour réécrire comme .
Étape 4.2.3.4.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.3.4.3
Associez et .
Étape 4.2.3.4.4
Annulez le facteur commun de .
Étape 4.2.3.4.4.1
Annulez le facteur commun.
Étape 4.2.3.4.4.2
Réécrivez l’expression.
Étape 4.2.3.4.5
Simplifiez
Étape 4.2.4
Associez les termes opposés dans .
Étape 4.2.4.1
Soustrayez de .
Étape 4.2.4.2
Additionnez et .
Étape 4.3
Évaluez .
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Additionnez et .
Étape 4.3.4
Additionnez et .
Étape 4.3.5
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.4
Comme et , est l’inverse de .