Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.2
Simplifiez le dénominateur.
Étape 1.2.1
Appliquez la règle de produit à .
Étape 1.2.2
Élevez à la puissance .
Étape 2
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 3.2.2
Annulez le facteur commun de .
Étape 3.2.2.1
Factorisez à partir de .
Étape 3.2.2.2
Annulez le facteur commun.
Étape 3.2.2.3
Réécrivez l’expression.
Étape 3.2.3
Annulez le facteur commun de .
Étape 3.2.3.1
Annulez le facteur commun.
Étape 3.2.3.2
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Étape 3.3.1
Multipliez par .
Étape 4
Étape 4.1
Réécrivez l’équation comme .
Étape 4.2
Divisez chaque terme dans par et simplifiez.
Étape 4.2.1
Divisez chaque terme dans par .
Étape 4.2.2
Simplifiez le côté gauche.
Étape 4.2.2.1
Annulez le facteur commun de .
Étape 4.2.2.1.1
Annulez le facteur commun.
Étape 4.2.2.1.2
Divisez par .
Étape 4.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.4
Simplifiez .
Étape 4.4.1
Réécrivez comme .
Étape 4.4.2
Toute racine de est .
Étape 4.4.3
Simplifiez le dénominateur.
Étape 4.4.3.1
Réécrivez comme .
Étape 4.4.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :