Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 1.2
Le plus petit multiple commun est le plus petit nombre positif dans lequel tous les nombres peuvent être divisés parfaitement.
1. Indiquez les facteurs premiers de chaque nombre.
2. Multipliez chaque facteur le plus grand nombre de fois qu’il apparaît dans un nombre.
Étape 1.3
Le nombre n’est pas un nombre premier car il ne comporte qu’un facteur positif, qui est lui-même.
Pas premier
Étape 1.4
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs premiers le plus grand nombre de fois qu’ils apparaissent dans un nombre ou l’autre.
Étape 1.5
Le facteur pour est lui-même.
se produit fois.
Étape 1.6
Le plus petit multiple commun de est le résultat de la multiplication de tous les facteurs le plus grand nombre de fois qu’ils apparaissent dans un terme ou l’autre.
Étape 2
Étape 2.1
Multipliez chaque terme dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez chaque terme.
Étape 2.2.1.1
Appliquez la propriété distributive.
Étape 2.2.1.2
Multipliez par .
Étape 2.2.1.3
Déplacez à gauche de .
Étape 2.2.1.4
Annulez le facteur commun de .
Étape 2.2.1.4.1
Annulez le facteur commun.
Étape 2.2.1.4.2
Réécrivez l’expression.
Étape 2.3
Simplifiez le côté droit.
Étape 2.3.1
Annulez le facteur commun de .
Étape 2.3.1.1
Annulez le facteur commun.
Étape 2.3.1.2
Réécrivez l’expression.
Étape 3
Étape 3.1
Déplacez tous les termes contenant du côté gauche de l’équation.
Étape 3.1.1
Soustrayez des deux côtés de l’équation.
Étape 3.1.2
Associez les termes opposés dans .
Étape 3.1.2.1
Soustrayez de .
Étape 3.1.2.2
Additionnez et .
Étape 3.2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.2
Soustrayez de .
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Simplifiez .
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Réécrivez comme .
Étape 3.4.3
Réécrivez comme .
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.