Algèbre Exemples

Resolva para x x^(2/3)=2x^(1/3)
Étape 1
Éliminez les exposants fractionnels en multipliant les deux exposants par le plus petit dénominateur commun.
Étape 2
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Annulez le facteur commun.
Étape 2.2.2
Réécrivez l’expression.
Étape 3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Appliquez la règle de produit à .
Étape 3.2
Élevez à la puissance .
Étape 3.3
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 3.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.3.2.1
Annulez le facteur commun.
Étape 3.3.2.2
Réécrivez l’expression.
Étape 3.4
Simplifiez
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Factorisez à partir de .
Étape 5.2
Factorisez à partir de .
Étape 5.3
Factorisez à partir de .
Étape 6
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 7
Définissez égal à .
Étape 8
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Définissez égal à .
Étape 8.2
Ajoutez aux deux côtés de l’équation.
Étape 9
La solution finale est l’ensemble des valeurs qui rendent vraie.