Algèbre Exemples

Resolva para x 35=12cos(66pix)+40
Étape 1
Réécrivez l’équation comme .
Étape 2
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2
Soustrayez de .
Étape 3
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Placez le signe moins devant la fraction.
Étape 4
Prenez le cosinus inverse des deux côtés de l’équation pour extraire de l’intérieur du cosinus.
Étape 5
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 5.1
Évaluez .
Étape 6
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 6.1
Divisez chaque terme dans par .
Étape 6.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.1.1
Annulez le facteur commun.
Étape 6.2.1.2
Réécrivez l’expression.
Étape 6.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 6.2.2.1
Annulez le facteur commun.
Étape 6.2.2.2
Divisez par .
Étape 6.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 6.3.1
Remplacez par une approximation.
Étape 6.3.2
Multipliez par .
Étape 6.3.3
Divisez par .
Étape 7
La fonction cosinus est négative dans les deuxième et troisième quadrants. Pour déterminer la deuxième solution, soustrayez l’angle de référence de pour déterminer la solution dans le troisième quadrant.
Étape 8
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 8.1
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 8.1.1
Multipliez par .
Étape 8.1.2
Soustrayez de .
Étape 8.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.1
Divisez chaque terme dans par .
Étape 8.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.1.1
Annulez le facteur commun.
Étape 8.2.2.1.2
Réécrivez l’expression.
Étape 8.2.2.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 8.2.2.2.1
Annulez le facteur commun.
Étape 8.2.2.2.2
Divisez par .
Étape 8.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 8.2.3.1
Remplacez par une approximation.
Étape 8.2.3.2
Multipliez par .
Étape 8.2.3.3
Divisez par .
Étape 9
Déterminez la période de .
Appuyez ici pour voir plus d’étapes...
Étape 9.1
La période de la fonction peut être calculée en utilisant .
Étape 9.2
Remplacez par dans la formule pour la période.
Étape 9.3
est d’environ qui est positif, alors retirez la valeur absolue
Étape 9.4
Annulez le facteur commun à et .
Appuyez ici pour voir plus d’étapes...
Étape 9.4.1
Factorisez à partir de .
Étape 9.4.2
Annulez les facteurs communs.
Appuyez ici pour voir plus d’étapes...
Étape 9.4.2.1
Factorisez à partir de .
Étape 9.4.2.2
Annulez le facteur commun.
Étape 9.4.2.3
Réécrivez l’expression.
Étape 9.5
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 9.5.1
Annulez le facteur commun.
Étape 9.5.2
Réécrivez l’expression.
Étape 10
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier