Entrer un problème...
Algèbre Exemples
et
Étape 1
et sont les deux solutions réelles distinctes de l’équation quadratique, ce qui signifie que et sont les facteurs de l’équation quadratique.
Étape 2
Étape 2.1
Appliquez la propriété distributive.
Étape 2.2
Appliquez la propriété distributive.
Étape 2.3
Appliquez la propriété distributive.
Étape 3
Étape 3.1
Simplifiez chaque terme.
Étape 3.1.1
Multipliez par .
Étape 3.1.2
Associez et .
Étape 3.1.3
Déplacez à gauche de .
Étape 3.1.4
Annulez le facteur commun de .
Étape 3.1.4.1
Annulez le facteur commun.
Étape 3.1.4.2
Réécrivez l’expression.
Étape 3.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.3
Associez et .
Étape 3.4
Associez les numérateurs sur le dénominateur commun.
Étape 3.5
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.6
Associez et .
Étape 3.7
Associez les numérateurs sur le dénominateur commun.
Étape 3.8
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 3.9
Associez et .
Étape 3.10
Associez les numérateurs sur le dénominateur commun.
Étape 4
Étape 4.1
Déplacez à gauche de .
Étape 4.2
Multipliez par .
Étape 4.3
Multipliez par .
Étape 4.4
Additionnez et .
Étape 4.5
Factorisez par regroupement.
Étape 4.5.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 4.5.1.1
Factorisez à partir de .
Étape 4.5.1.2
Réécrivez comme plus
Étape 4.5.1.3
Appliquez la propriété distributive.
Étape 4.5.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.5.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.5.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.5.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 5
Étape 5.1
Appliquez la propriété distributive.
Étape 5.2
Appliquez la propriété distributive.
Étape 5.3
Appliquez la propriété distributive.
Étape 6
Étape 6.1
Simplifiez chaque terme.
Étape 6.1.1
Multipliez par en additionnant les exposants.
Étape 6.1.1.1
Déplacez .
Étape 6.1.1.2
Multipliez par .
Étape 6.1.2
Multipliez par .
Étape 6.1.3
Multipliez par .
Étape 6.2
Additionnez et .
Étape 7
Divisez la fraction en deux fractions.
Étape 8
Divisez la fraction en deux fractions.
Étape 9
Étape 9.1
Annulez le facteur commun.
Étape 9.2
Divisez par .
Étape 10
Divisez par .
Étape 11
L’équation quadratique standard en utilisant l’ensemble de solutions donné est .
Étape 12