Entrer un problème...
Algèbre Exemples
Étape 1
Pour diviser par une fraction, multipliez par sa réciproque.
Étape 2
Étape 2.1
Factorisez à partir de .
Étape 2.1.1
Factorisez à partir de .
Étape 2.1.2
Factorisez à partir de .
Étape 2.1.3
Factorisez à partir de .
Étape 2.1.4
Factorisez à partir de .
Étape 2.1.5
Factorisez à partir de .
Étape 2.2
Factorisez à l’aide de la méthode AC.
Étape 2.2.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 2.2.2
Écrivez la forme factorisée avec ces entiers.
Étape 3
Étape 3.1
Réécrivez comme .
Étape 3.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 4
Étape 4.1
Factorisez à partir de .
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Factorisez à partir de .
Étape 4.1.3
Factorisez à partir de .
Étape 4.2
Annulez le facteur commun de .
Étape 4.2.1
Factorisez à partir de .
Étape 4.2.2
Factorisez à partir de .
Étape 4.2.3
Annulez le facteur commun.
Étape 4.2.4
Réécrivez l’expression.
Étape 4.3
Multipliez par .
Étape 4.4
Multipliez par .
Étape 4.5
Annulez le facteur commun à et .
Étape 4.5.1
Factorisez à partir de .
Étape 4.5.2
Annulez les facteurs communs.
Étape 4.5.2.1
Factorisez à partir de .
Étape 4.5.2.2
Annulez le facteur commun.
Étape 4.5.2.3
Réécrivez l’expression.
Étape 5
Étape 5.1
Réécrivez comme .
Étape 5.2
Les deux termes étant des carrés parfaits, factorisez à l’aide de la formule de la différence des carrés, où et .
Étape 6
Étape 6.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 6.2
Écrivez la forme factorisée avec ces entiers.
Étape 7
Étape 7.1
Annulez le facteur commun de .
Étape 7.1.1
Factorisez à partir de .
Étape 7.1.2
Factorisez à partir de .
Étape 7.1.3
Annulez le facteur commun.
Étape 7.1.4
Réécrivez l’expression.
Étape 7.2
Annulez le facteur commun de .
Étape 7.2.1
Annulez le facteur commun.
Étape 7.2.2
Réécrivez l’expression.
Étape 7.3
Associez et .