Entrer un problème...
Algèbre Exemples
What is the inverse of
Étape 1
Écrivez comme une équation.
Étape 2
Interchangez les variables.
Étape 3
Étape 3.1
Réécrivez l’équation comme .
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Utilisez la formule quadratique pour déterminer les solutions.
Étape 3.4
Remplacez les valeurs , et dans la formule quadratique et résolvez pour .
Étape 3.5
Simplifiez
Étape 3.5.1
Simplifiez le numérateur.
Étape 3.5.1.1
Élevez à la puissance .
Étape 3.5.1.2
Multipliez par .
Étape 3.5.1.3
Appliquez la propriété distributive.
Étape 3.5.1.4
Multipliez par .
Étape 3.5.1.5
Multipliez par .
Étape 3.5.1.6
Soustrayez de .
Étape 3.5.1.7
Additionnez et .
Étape 3.5.1.8
Réécrivez comme .
Étape 3.5.1.9
Extrayez les termes de sous le radical.
Étape 3.5.2
Multipliez par .
Étape 3.5.3
Simplifiez .
Étape 3.6
Simplifiez l’expression pour résoudre la partie du .
Étape 3.6.1
Simplifiez le numérateur.
Étape 3.6.1.1
Élevez à la puissance .
Étape 3.6.1.2
Multipliez par .
Étape 3.6.1.3
Appliquez la propriété distributive.
Étape 3.6.1.4
Multipliez par .
Étape 3.6.1.5
Multipliez par .
Étape 3.6.1.6
Soustrayez de .
Étape 3.6.1.7
Additionnez et .
Étape 3.6.1.8
Réécrivez comme .
Étape 3.6.1.9
Extrayez les termes de sous le radical.
Étape 3.6.2
Multipliez par .
Étape 3.6.3
Simplifiez .
Étape 3.6.4
Remplacez le par .
Étape 3.7
Simplifiez l’expression pour résoudre la partie du .
Étape 3.7.1
Simplifiez le numérateur.
Étape 3.7.1.1
Élevez à la puissance .
Étape 3.7.1.2
Multipliez par .
Étape 3.7.1.3
Appliquez la propriété distributive.
Étape 3.7.1.4
Multipliez par .
Étape 3.7.1.5
Multipliez par .
Étape 3.7.1.6
Soustrayez de .
Étape 3.7.1.7
Additionnez et .
Étape 3.7.1.8
Réécrivez comme .
Étape 3.7.1.9
Extrayez les termes de sous le radical.
Étape 3.7.2
Multipliez par .
Étape 3.7.3
Simplifiez .
Étape 3.7.4
Remplacez le par .
Étape 3.8
La réponse finale est la combinaison des deux solutions.
Étape 4
Remplacez par pour montrer la réponse finale.
Étape 5
Étape 5.1
Le domaine de l’inverse est la plage de la fonction initiale et inversement. Déterminez le domaine et la plage de et puis comparez-les.
Étape 5.2
Déterminez la plage de .
Étape 5.2.1
La plage est l’ensemble de toutes les valeurs valides. Utilisez le graphe pour déterminer la plage.
Notation d’intervalle :
Étape 5.3
Déterminez le domaine de .
Étape 5.3.1
Définissez le radicande dans supérieur ou égal à pour déterminer où l’expression est définie.
Étape 5.3.2
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 5.4
Déterminez le domaine de .
Étape 5.4.1
Le domaine de l’expression est l’ensemble des nombres réels excepté là où l’expression est indéfinie. Dans ce cas, aucun nombre réel ne rend l’expression indéfinie.
Étape 5.5
Comme le domaine de se trouve sur la plage de et comme la plage de est le domaine de , est l’inverse de .
Étape 6