Algèbre Exemples

Resolva para x x-81x^-3=0
Étape 1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 1.2
Associez et .
Étape 1.3
Placez le signe moins devant la fraction.
Étape 2
Déterminez le plus petit dénominateur commun des termes dans l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déterminer le plus petit dénominateur commun d’une liste d’expressions équivaut à déterminer le plus petit multiple commun des dénominateurs de ces valeurs.
Étape 2.2
Le plus petit multiple commun de toute expression est l’expression.
Étape 3
Multiplier chaque terme dans par afin d’éliminer les fractions.
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Multipliez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1.1.1
Élevez à la puissance .
Étape 3.2.1.1.1.2
Utilisez la règle de puissance pour associer des exposants.
Étape 3.2.1.1.2
Additionnez et .
Étape 3.2.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.2.1
Placez le signe négatif initial dans dans le numérateur.
Étape 3.2.1.2.2
Annulez le facteur commun.
Étape 3.2.1.2.3
Réécrivez l’expression.
Étape 3.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.3.1
Multipliez par .
Étape 4
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Réécrivez comme .
Étape 4.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.4.3
La solution complète est le résultat des parties positive et négative de la solution.