Entrer un problème...
Algèbre Exemples
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.2.1
Divisez chaque terme dans par .
Étape 2.2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.2.1.2
Divisez par .
Étape 2.2.2.3
Simplifiez le côté droit.
Étape 2.2.2.3.1
Divisez par .
Étape 3
Étape 3.1
Définissez égal à .
Étape 3.2
Ajoutez aux deux côtés de l’équation.
Étape 4
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Utilisez chaque racine pour créer des intervalles de test.
Étape 6
Étape 6.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.1.2
Remplacez par dans l’inégalité d’origine.
Étape 6.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 6.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.2.2
Remplacez par dans l’inégalité d’origine.
Étape 6.2.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 6.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 6.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 6.3.2
Remplacez par dans l’inégalité d’origine.
Étape 6.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 6.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 7
La solution se compose de tous les intervalles vrais.
ou
Étape 8
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 9