Entrer un problème...
Algèbre Exemples
Étape 1
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 2
Ajoutez aux deux côtés de l’équation.
Étape 3
Étape 3.1
Divisez chaque terme dans par .
Étape 3.2
Simplifiez le côté gauche.
Étape 3.2.1
Annulez le facteur commun de .
Étape 3.2.1.1
Annulez le facteur commun.
Étape 3.2.1.2
Divisez par .
Étape 4
Soustrayez des deux côtés de l’équation.
Étape 5
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 6
Consolidez les solutions.
Étape 7
Étape 7.1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 7.2
Soustrayez des deux côtés de l’équation.
Étape 7.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 8
Utilisez chaque racine pour créer des intervalles de test.
Étape 9
Étape 9.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 9.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.1.2
Remplacez par dans l’inégalité d’origine.
Étape 9.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 9.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 9.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.2.2
Remplacez par dans l’inégalité d’origine.
Étape 9.2.3
Le côté gauche n’est pas supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 9.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 9.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 9.3.2
Remplacez par dans l’inégalité d’origine.
Étape 9.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 9.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Faux
Vrai
Vrai
Faux
Vrai
Étape 10
La solution se compose de tous les intervalles vrais.
ou
Étape 11
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 12