Entrer un problème...
Algèbre Exemples
Étape 1
La fonction parent est la forme la plus simple du type de fonction donné.
Étape 2
Étape 2.1
Simplifiez chaque terme.
Étape 2.1.1
Réécrivez comme .
Étape 2.1.2
Développez à l’aide de la méthode FOIL.
Étape 2.1.2.1
Appliquez la propriété distributive.
Étape 2.1.2.2
Appliquez la propriété distributive.
Étape 2.1.2.3
Appliquez la propriété distributive.
Étape 2.1.3
Simplifiez et associez les termes similaires.
Étape 2.1.3.1
Simplifiez chaque terme.
Étape 2.1.3.1.1
Multipliez par .
Étape 2.1.3.1.2
Déplacez à gauche de .
Étape 2.1.3.1.3
Multipliez par .
Étape 2.1.3.2
Additionnez et .
Étape 2.1.4
Appliquez la propriété distributive.
Étape 2.1.5
Simplifiez
Étape 2.1.5.1
Associez et .
Étape 2.1.5.2
Annulez le facteur commun de .
Étape 2.1.5.2.1
Factorisez à partir de .
Étape 2.1.5.2.2
Annulez le facteur commun.
Étape 2.1.5.2.3
Réécrivez l’expression.
Étape 2.1.5.3
Annulez le facteur commun de .
Étape 2.1.5.3.1
Factorisez à partir de .
Étape 2.1.5.3.2
Annulez le facteur commun.
Étape 2.1.5.3.3
Réécrivez l’expression.
Étape 2.2
Associez les termes opposés dans .
Étape 2.2.1
Soustrayez de .
Étape 2.2.2
Additionnez et .
Étape 3
Supposez que est et que est .
Étape 4
La transformation décrite est de à .
Étape 5
Le décalage horizontal dépend de la valeur de . Le décalage horizontal est décrit comme :
- Le graphe est décalé de unités vers la gauche.
- Le graphe est décalé de unités vers la droite.
Décalage horizontal : Unités de gauche
Étape 6
Le décalage vertical dépend de la valeur de . Le décalage vertical est décrit comme :
- Le graphe est décalé de unités vers le haut.
- The graph is shifted down units.
Décalage vertical : unités vers le bas
Étape 7
Le graphe est reflété autour de l’abscisse quand .
Réflexion par rapport à l’abscisse : Aucune
Étape 8
Le graphe est reflété autour de l’ordonnée quand .
Réflexion par rapport à l’ordonnée : Aucune
Étape 9
La compression et le développement dépendent de la valeur de .
Quand est supérieur à : Étiré verticalement
Où est compris entre et : Comprimé verticalement
Compression verticale ou étirement : Comprimé
Étape 10
Comparez et énumérez les transformées.
Fonction parent :
Décalage horizontal : Unités de gauche
Décalage vertical : unités vers le bas
Réflexion par rapport à l’abscisse : Aucune
Réflexion par rapport à l’ordonnée : Aucune
Compression verticale ou étirement : Comprimé
Étape 11