Algèbre Exemples

Trouver la fonction réciproque y=(2-x)/3
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Multipliez les deux côtés par .
Étape 2.3
Simplifiez
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.3.1.1.1.1
Annulez le facteur commun.
Étape 2.3.1.1.1.2
Réécrivez l’expression.
Étape 2.3.1.1.2
Remettez dans l’ordre et .
Étape 2.3.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.3.2.1
Déplacez à gauche de .
Étape 2.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Soustrayez des deux côtés de l’équation.
Étape 2.4.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
La division de deux valeurs négatives produit une valeur positive.
Étape 2.4.2.2.2
Divisez par .
Étape 2.4.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.3.1.1
Déplacez le moins un du dénominateur de .
Étape 2.4.2.3.1.2
Réécrivez comme .
Étape 2.4.2.3.1.3
Multipliez par .
Étape 2.4.2.3.1.4
Divisez par .
Étape 3
Remplacez par pour montrer la réponse finale.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1.1
Factorisez à partir de .
Étape 4.2.3.1.2
Annulez le facteur commun.
Étape 4.2.3.1.3
Réécrivez l’expression.
Étape 4.2.3.2
Appliquez la propriété distributive.
Étape 4.2.3.3
Multipliez par .
Étape 4.2.3.4
Multipliez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.4.1
Multipliez par .
Étape 4.2.3.4.2
Multipliez par .
Étape 4.2.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Additionnez et .
Étape 4.2.4.2
Additionnez et .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.3.3.1
Appliquez la propriété distributive.
Étape 4.3.3.2
Multipliez par .
Étape 4.3.3.3
Multipliez par .
Étape 4.3.3.4
Soustrayez de .
Étape 4.3.3.5
Additionnez et .
Étape 4.3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.4.1
Annulez le facteur commun.
Étape 4.3.4.2
Divisez par .
Étape 4.4
Comme et , est l’inverse de .