Algèbre Exemples

Trouver la fonction réciproque y=4 racine carrée de x+3
Étape 1
Interchangez les variables.
Étape 2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Réécrivez l’équation comme .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.3
Pour retirer le radical du côté gauche de l’équation, élevez au carré les deux côtés de l’équation.
Étape 2.4
Simplifiez chaque côté de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Utilisez pour réécrire comme .
Étape 2.4.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1
Multipliez les exposants dans .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1.1
Appliquez la règle de puissance et multipliez les exposants, .
Étape 2.4.2.1.1.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1.1.2.1
Annulez le facteur commun.
Étape 2.4.2.1.1.2.2
Réécrivez l’expression.
Étape 2.4.2.1.2
Simplifiez
Étape 2.4.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.3.1.1
Appliquez la règle de produit à .
Étape 2.4.3.1.2
Élevez à la puissance .
Étape 2.5
Soustrayez des deux côtés de l’équation.
Étape 3
Remplacez par pour montrer la réponse finale.
Étape 4
Vérifiez si est l’inverse de .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Pour vérifier l’inverse, vérifiez si et .
Étape 4.2
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Définissez la fonction de résultat composé.
Étape 4.2.2
Évaluez en remplaçant la valeur de par .
Étape 4.2.3
Simplifiez chaque terme.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1.1
Appliquez la règle de produit à .
Étape 4.2.3.1.2
Élevez à la puissance .
Étape 4.2.3.1.3
Réécrivez comme .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1.3.1
Utilisez pour réécrire comme .
Étape 4.2.3.1.3.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 4.2.3.1.3.3
Associez et .
Étape 4.2.3.1.3.4
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1.3.4.1
Annulez le facteur commun.
Étape 4.2.3.1.3.4.2
Réécrivez l’expression.
Étape 4.2.3.1.3.5
Simplifiez
Étape 4.2.3.2
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.2.1
Annulez le facteur commun.
Étape 4.2.3.2.2
Divisez par .
Étape 4.2.4
Associez les termes opposés dans .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Soustrayez de .
Étape 4.2.4.2
Additionnez et .
Étape 4.3
Évaluez .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.1
Définissez la fonction de résultat composé.
Étape 4.3.2
Évaluez en remplaçant la valeur de par .
Étape 4.3.3
Additionnez et .
Étape 4.3.4
Additionnez et .
Étape 4.3.5
Réécrivez comme .
Étape 4.3.6
Réécrivez comme .
Étape 4.3.7
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.3.8
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 4.3.8.1
Annulez le facteur commun.
Étape 4.3.8.2
Réécrivez l’expression.
Étape 4.4
Comme et , est l’inverse de .