Algèbre Exemples

Trouver les racines (zéros) (x^2+1)(x^3+2x)(x^2-64)=0
Étape 1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Définissez égal à .
Étape 2.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.3
Réécrivez comme .
Étape 2.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 2.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 2.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez égal à .
Étape 3.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Factorisez à partir de .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1.1
Factorisez à partir de .
Étape 3.2.1.2
Factorisez à partir de .
Étape 3.2.1.3
Factorisez à partir de .
Étape 3.2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 3.2.3
Définissez égal à .
Étape 3.2.4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.1
Définissez égal à .
Étape 3.2.4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 3.2.4.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.2.4.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.3.1
Réécrivez comme .
Étape 3.2.4.2.3.2
Réécrivez comme .
Étape 3.2.4.2.3.3
Réécrivez comme .
Étape 3.2.4.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.4.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.2.4.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.2.4.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 4
Définissez égal à et résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 4.1
Définissez égal à .
Étape 4.2
Résolvez pour .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.1
Ajoutez aux deux côtés de l’équation.
Étape 4.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 4.2.3
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 4.2.3.1
Réécrivez comme .
Étape 4.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 4.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 4.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 4.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 4.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 6