Entrer un problème...
Algèbre Exemples
Étape 1
Définissez égal à .
Étape 2
Étape 2.1
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 2.2
Définissez égal à et résolvez .
Étape 2.2.1
Définissez égal à .
Étape 2.2.2
Résolvez pour .
Étape 2.2.2.1
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 2.2.2.2
Simplifiez .
Étape 2.2.2.2.1
Réécrivez comme .
Étape 2.2.2.2.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 2.2.2.2.3
Plus ou moins est .
Étape 2.3
Définissez égal à et résolvez .
Étape 2.3.1
Définissez égal à .
Étape 2.3.2
Résolvez pour .
Étape 2.3.2.1
Définissez le égal à .
Étape 2.3.2.2
Résolvez .
Étape 2.3.2.2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.3.2.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.3.2.2.2.1
Divisez chaque terme dans par .
Étape 2.3.2.2.2.2
Simplifiez le côté gauche.
Étape 2.3.2.2.2.2.1
Annulez le facteur commun de .
Étape 2.3.2.2.2.2.1.1
Annulez le facteur commun.
Étape 2.3.2.2.2.2.1.2
Divisez par .
Étape 2.4
Définissez égal à et résolvez .
Étape 2.4.1
Définissez égal à .
Étape 2.4.2
Résolvez pour .
Étape 2.4.2.1
Soustrayez des deux côtés de l’équation.
Étape 2.4.2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.4.2.2.1
Divisez chaque terme dans par .
Étape 2.4.2.2.2
Simplifiez le côté gauche.
Étape 2.4.2.2.2.1
Annulez le facteur commun de .
Étape 2.4.2.2.2.1.1
Annulez le facteur commun.
Étape 2.4.2.2.2.1.2
Divisez par .
Étape 2.4.2.2.3
Simplifiez le côté droit.
Étape 2.4.2.2.3.1
Placez le signe moins devant la fraction.
Étape 2.5
La solution finale est l’ensemble des valeurs qui rendent vraie. La multiplicité d’une racine est le nombre de fois que la racine apparaît.
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
(Multiplicité de )
Étape 3