Algèbre Exemples

Resolva a Inequação para x (x^2+4x-3)/(x^2+1)<x
Étape 1
Soustrayez des deux côtés de l’inégalité.
Étape 2
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 2.2
Associez et .
Étape 2.3
Associez les numérateurs sur le dénominateur commun.
Étape 2.4
Simplifiez le numérateur.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Appliquez la propriété distributive.
Étape 2.4.2
Multipliez par en additionnant les exposants.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.1
Déplacez .
Étape 2.4.2.2
Multipliez par .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.2.2.1
Élevez à la puissance .
Étape 2.4.2.2.2
Utilisez la règle de puissance pour associer des exposants.
Étape 2.4.2.3
Additionnez et .
Étape 2.4.3
Multipliez par .
Étape 2.4.4
Soustrayez de .
Étape 2.4.5
Remettez les termes dans l’ordre.
Étape 2.4.6
Réécrivez en forme factorisée.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.6.1
Factorisez le plus grand facteur commun à partir de chaque groupe.
Appuyez ici pour voir plus d’étapes...
Étape 2.4.6.1.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 2.4.6.1.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 2.4.6.2
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 2.5
Factorisez à partir de .
Étape 2.6
Réécrivez comme .
Étape 2.7
Factorisez à partir de .
Étape 2.8
Réécrivez comme .
Étape 2.9
Placez le signe moins devant la fraction.
Étape 3
Déterminez toutes les valeurs où l’expression passe de négative à positive en définissant chaque facteur égal à et en résolvant.
Étape 4
Ajoutez aux deux côtés de l’équation.
Étape 5
Ajoutez aux deux côtés de l’équation.
Étape 6
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 7
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 8
Soustrayez des deux côtés de l’équation.
Étape 9
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 10
Réécrivez comme .
Étape 11
La solution complète est le résultat des parties positive et négative de la solution.
Appuyez ici pour voir plus d’étapes...
Étape 11.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 11.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 11.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 12
Résolvez pour chaque facteur afin de déterminer les valeurs où l’expression de la valeur absolue passe de négative à positive.
Étape 13
Consolidez les solutions.
Étape 14
Utilisez chaque racine pour créer des intervalles de test.
Étape 15
Choisissez une valeur de test depuis chaque intervalle et placez cette valeur dans l’inégalité d’origine afin de déterminer quels intervalles satisfont à l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 15.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 15.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 15.1.2
Remplacez par dans l’inégalité d’origine.
Étape 15.1.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 15.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 15.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 15.2.2
Remplacez par dans l’inégalité d’origine.
Étape 15.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 15.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 15.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 15.3.2
Remplacez par dans l’inégalité d’origine.
Étape 15.3.3
Le côté gauche n’est pas inférieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 15.4
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 15.4.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 15.4.2
Remplacez par dans l’inégalité d’origine.
Étape 15.4.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 15.5
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Vrai
Faux
Vrai
Faux
Vrai
Étape 16
La solution se compose de tous les intervalles vrais.
ou
Étape 17
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 18