Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Soustrayez des deux côtés de l’inégalité.
Étape 1.2
Soustrayez de .
Étape 2
Convertissez l’inégalité en une équation.
Étape 3
Soustrayez des deux côtés de l’équation.
Étape 4
Étape 4.1
Pour un polynôme de la forme , réécrivez le point milieu comme la somme de deux termes dont le produit est et dont la somme est .
Étape 4.1.1
Factorisez à partir de .
Étape 4.1.2
Réécrivez comme plus
Étape 4.1.3
Appliquez la propriété distributive.
Étape 4.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.2.1
Regroupez les deux premiers termes et les deux derniers termes.
Étape 4.2.2
Factorisez le plus grand facteur commun à partir de chaque groupe.
Étape 4.3
Factorisez le polynôme en factorisant le plus grand facteur commun, .
Étape 5
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 6
Étape 6.1
Définissez égal à .
Étape 6.2
Ajoutez aux deux côtés de l’équation.
Étape 7
Étape 7.1
Définissez égal à .
Étape 7.2
Résolvez pour .
Étape 7.2.1
Soustrayez des deux côtés de l’équation.
Étape 7.2.2
Divisez chaque terme dans par et simplifiez.
Étape 7.2.2.1
Divisez chaque terme dans par .
Étape 7.2.2.2
Simplifiez le côté gauche.
Étape 7.2.2.2.1
Annulez le facteur commun de .
Étape 7.2.2.2.1.1
Annulez le facteur commun.
Étape 7.2.2.2.1.2
Divisez par .
Étape 7.2.2.3
Simplifiez le côté droit.
Étape 7.2.2.3.1
Placez le signe moins devant la fraction.
Étape 8
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 9
Utilisez chaque racine pour créer des intervalles de test.
Étape 10
Étape 10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 10.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 10.2
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.2.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.2.2
Remplacez par dans l’inégalité d’origine.
Étape 10.2.3
Le côté gauche est inférieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 10.3
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.3.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.3.2
Remplacez par dans l’inégalité d’origine.
Étape 10.3.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est faux.
Faux
Faux
Étape 10.4
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Faux
Vrai
Faux
Faux
Vrai
Faux
Étape 11
La solution se compose de tous les intervalles vrais.
Étape 12
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 13