Algèbre Exemples

Resolva para x -3 base logarithmique 5 de x+6<=9
Étape 1
Convertissez l’inégalité en une égalité.
Étape 2
Résolvez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Soustrayez des deux côtés de l’équation.
Étape 2.1.2
Soustrayez de .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.3.1
Divisez par .
Étape 2.3
Réécrivez en forme exponentielle en utilisant la définition d’un logarithme. Si et sont des nombres réels positifs et , alors est équivalent à .
Étape 2.4
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 2.4.1
Réécrivez l’équation comme .
Étape 2.4.2
Réécrivez l’expression en utilisant la règle de l’exposant négatif .
Étape 3
Déterminez le domaine de .
Appuyez ici pour voir plus d’étapes...
Étape 3.1
Définissez l’argument dans supérieur à pour déterminer où l’expression est définie.
Étape 3.2
Résolvez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.1
Prenez la racine spécifiée des deux côtés de l’inégalité pour éliminer l’exposant du côté gauche.
Étape 3.2.2
Simplifiez l’équation.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.1.1
Extrayez les termes de sous le radical.
Étape 3.2.2.2
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1
Simplifiez .
Appuyez ici pour voir plus d’étapes...
Étape 3.2.2.2.1.1
Réécrivez comme .
Étape 3.2.2.2.1.2
Extrayez les termes de sous le radical.
Étape 3.3
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Étape 4
La solution se compose de tous les intervalles vrais.
Étape 5
Le résultat peut être affiché en différentes formes.
Forme d’inégalité :
Notation d’intervalle :
Étape 6