Entrer un problème...
Algèbre Exemples
Étape 1
Prenez le sinus inverse des deux côtés de l’équation pour extraire de l’intérieur du sinus.
Étape 2
Étape 2.1
La valeur exacte de est .
Étape 3
La fonction sinus est négative dans les troisième et quatrième quadrants. Pour déterminer la deuxième solution, soustrayez la solution de pour déterminer un angle de référence. Ajoutez ensuite cet angle de référence à pour déterminer la solution dans le troisième quadrant.
Étape 4
Étape 4.1
Soustrayez de .
Étape 4.2
L’angle résultant de est positif, inférieur à et coterminal avec .
Étape 5
Étape 5.1
La période de la fonction peut être calculée en utilisant .
Étape 5.2
Remplacez par dans la formule pour la période.
Étape 5.3
La valeur absolue est la distance entre un nombre et zéro. La distance entre et est .
Étape 5.4
Divisez par .
Étape 6
Étape 6.1
Ajoutez à pour déterminer l’angle positif.
Étape 6.2
Pour écrire comme une fraction avec un dénominateur commun, multipliez par .
Étape 6.3
Associez les fractions.
Étape 6.3.1
Associez et .
Étape 6.3.2
Associez les numérateurs sur le dénominateur commun.
Étape 6.4
Simplifiez le numérateur.
Étape 6.4.1
Multipliez par .
Étape 6.4.2
Soustrayez de .
Étape 6.5
Indiquez les nouveaux angles.
Étape 7
La période de la fonction est si bien que les valeurs se répètent tous les radians dans les deux sens.
, pour tout entier
Étape 8
Consolidez les réponses.
, pour tout entier
Étape 9
Utilisez chaque racine pour créer des intervalles de test.
Étape 10
Étape 10.1
Testez une valeur sur l’intervalle pour voir si elle rend vraie l’inégalité.
Étape 10.1.1
Choisissez une valeur sur l’intervalle et constatez si cette valeur rend vraie l’inégalité d’origine.
Étape 10.1.2
Remplacez par dans l’inégalité d’origine.
Étape 10.1.3
Le côté gauche est supérieur au côté droit , ce qui signifie que l’énoncé donné est toujours vrai.
Vrai
Vrai
Étape 10.2
Comparez les intervalles afin de déterminer lesquels satisfont à l’inégalité d’origine.
Vrai
Vrai
Étape 11
La solution se compose de tous les intervalles vrais.
, pour tout entier
Étape 12