Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Réécrivez.
Étape 1.2
Simplifiez en multipliant.
Étape 1.2.1
Appliquez la propriété distributive.
Étape 1.2.2
Simplifiez l’expression.
Étape 1.2.2.1
Réécrivez en utilisant la commutativité de la multiplication.
Étape 1.2.2.2
Multipliez par .
Étape 1.3
Simplifiez chaque terme.
Étape 1.3.1
Multipliez par en additionnant les exposants.
Étape 1.3.1.1
Déplacez .
Étape 1.3.1.2
Multipliez par .
Étape 1.3.2
Multipliez par .
Étape 2
Étape 2.1
Appliquez la propriété distributive.
Étape 2.2
Multipliez par en additionnant les exposants.
Étape 2.2.1
Déplacez .
Étape 2.2.2
Multipliez par .
Étape 2.3
Multipliez par .
Étape 3
Étape 3.1
Soustrayez des deux côtés de l’équation.
Étape 3.2
Soustrayez des deux côtés de l’équation.
Étape 3.3
Soustrayez de .
Étape 3.4
Soustrayez de .
Étape 3.5
Multipliez par .
Étape 3.6
Additionnez et .
Étape 4
Étape 4.1
Divisez chaque terme dans par .
Étape 4.2
Simplifiez le côté gauche.
Étape 4.2.1
Annulez le facteur commun de .
Étape 4.2.1.1
Annulez le facteur commun.
Étape 4.2.1.2
Divisez par .
Étape 4.3
Simplifiez le côté droit.
Étape 4.3.1
Annulez le facteur commun à et .
Étape 4.3.1.1
Factorisez à partir de .
Étape 4.3.1.2
Annulez les facteurs communs.
Étape 4.3.1.2.1
Factorisez à partir de .
Étape 4.3.1.2.2
Annulez le facteur commun.
Étape 4.3.1.2.3
Réécrivez l’expression.
Étape 5
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 6
Étape 6.1
Réécrivez comme .
Étape 6.2
Toute racine de est .
Étape 6.3
Multipliez par .
Étape 6.4
Associez et simplifiez le dénominateur.
Étape 6.4.1
Multipliez par .
Étape 6.4.2
Élevez à la puissance .
Étape 6.4.3
Élevez à la puissance .
Étape 6.4.4
Utilisez la règle de puissance pour associer des exposants.
Étape 6.4.5
Additionnez et .
Étape 6.4.6
Réécrivez comme .
Étape 6.4.6.1
Utilisez pour réécrire comme .
Étape 6.4.6.2
Appliquez la règle de puissance et multipliez les exposants, .
Étape 6.4.6.3
Associez et .
Étape 6.4.6.4
Annulez le facteur commun de .
Étape 6.4.6.4.1
Annulez le facteur commun.
Étape 6.4.6.4.2
Réécrivez l’expression.
Étape 6.4.6.5
Évaluez l’exposant.
Étape 7
Étape 7.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 7.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 7.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 8
Le résultat peut être affiché en différentes formes.
Forme exacte :
Forme décimale :