Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Pour déterminer la ou les abscisses à l’origine, remplacez par et résolvez .
Étape 1.2
Résolvez l’équation.
Étape 1.2.1
Réécrivez l’équation comme .
Étape 1.2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 1.2.3
Définissez égal à et résolvez .
Étape 1.2.3.1
Définissez égal à .
Étape 1.2.3.2
Résolvez pour .
Étape 1.2.3.2.1
Ajoutez aux deux côtés de l’équation.
Étape 1.2.3.2.2
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 1.2.3.2.3
Simplifiez .
Étape 1.2.3.2.3.1
Réécrivez comme .
Étape 1.2.3.2.3.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 1.2.3.2.4
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.3.2.4.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 1.2.3.2.4.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 1.2.3.2.4.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 1.2.4
Définissez égal à et résolvez .
Étape 1.2.4.1
Définissez égal à .
Étape 1.2.4.2
Résolvez pour .
Étape 1.2.4.2.1
Factorisez à l’aide de la méthode AC.
Étape 1.2.4.2.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 1.2.4.2.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 1.2.4.2.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 1.2.4.2.3
Définissez égal à et résolvez .
Étape 1.2.4.2.3.1
Définissez égal à .
Étape 1.2.4.2.3.2
Ajoutez aux deux côtés de l’équation.
Étape 1.2.4.2.4
Définissez égal à et résolvez .
Étape 1.2.4.2.4.1
Définissez égal à .
Étape 1.2.4.2.4.2
Soustrayez des deux côtés de l’équation.
Étape 1.2.4.2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 1.2.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 1.3
abscisse(s) à l’origine en forme de point.
abscisse(s) à l’origine :
abscisse(s) à l’origine :
Étape 2
Étape 2.1
Pour trouver la ou les ordonnées à l’origine, remplacez par et résolvez .
Étape 2.2
Résolvez l’équation.
Étape 2.2.1
Supprimez les parenthèses.
Étape 2.2.2
Supprimez les parenthèses.
Étape 2.2.3
Supprimez les parenthèses.
Étape 2.2.4
Supprimez les parenthèses.
Étape 2.2.5
Simplifiez .
Étape 2.2.5.1
L’élévation de à toute puissance positive produit .
Étape 2.2.5.2
Soustrayez de .
Étape 2.2.5.3
L’élévation de à toute puissance positive produit .
Étape 2.2.5.4
Additionnez et .
Étape 2.2.5.5
Soustrayez de .
Étape 2.2.5.6
Multipliez par .
Étape 2.3
ordonnée(s) à l’origine en forme de point.
ordonnée(s) à l’origine :
ordonnée(s) à l’origine :
Étape 3
Indiquez les intersections.
abscisse(s) à l’origine :
ordonnée(s) à l’origine :
Étape 4