Entrer un problème...
Algèbre Exemples
Étape 1
Étape 1.1
Divisez chaque terme dans par .
Étape 1.2
Simplifiez le côté gauche.
Étape 1.2.1
Annulez le facteur commun de .
Étape 1.2.1.1
Annulez le facteur commun.
Étape 1.2.1.2
Divisez par .
Étape 1.3
Simplifiez le côté droit.
Étape 1.3.1
Simplifiez chaque terme.
Étape 1.3.1.1
Annulez le facteur commun à et .
Étape 1.3.1.1.1
Factorisez à partir de .
Étape 1.3.1.1.2
Annulez les facteurs communs.
Étape 1.3.1.1.2.1
Factorisez à partir de .
Étape 1.3.1.1.2.2
Annulez le facteur commun.
Étape 1.3.1.1.2.3
Réécrivez l’expression.
Étape 1.3.1.1.2.4
Divisez par .
Étape 1.3.1.2
Divisez par .
Étape 2
Étape 2.1
Remplacez toutes les occurrences de dans par .
Étape 2.2
Simplifiez le côté gauche.
Étape 2.2.1
Simplifiez .
Étape 2.2.1.1
Simplifiez chaque terme.
Étape 2.2.1.1.1
Appliquez la propriété distributive.
Étape 2.2.1.1.2
Multipliez par .
Étape 2.2.1.1.3
Multipliez par .
Étape 2.2.1.2
Soustrayez de .
Étape 3
Étape 3.1
Déplacez tous les termes ne contenant pas du côté droit de l’équation.
Étape 3.1.1
Ajoutez aux deux côtés de l’équation.
Étape 3.1.2
Additionnez et .
Étape 3.2
Divisez chaque terme dans par et simplifiez.
Étape 3.2.1
Divisez chaque terme dans par .
Étape 3.2.2
Simplifiez le côté gauche.
Étape 3.2.2.1
Annulez le facteur commun de .
Étape 3.2.2.1.1
Annulez le facteur commun.
Étape 3.2.2.1.2
Divisez par .
Étape 3.2.3
Simplifiez le côté droit.
Étape 3.2.3.1
Divisez par .
Étape 3.3
Prenez la racine spécifiée des deux côtés de l’équation pour éliminer l’exposant du côté gauche.
Étape 3.4
Simplifiez .
Étape 3.4.1
Réécrivez comme .
Étape 3.4.2
Extrayez les termes de sous le radical, en supposant qu’il s’agit de nombres réels positifs.
Étape 3.5
La solution complète est le résultat des parties positive et négative de la solution.
Étape 3.5.1
Commencez par utiliser la valeur positive du pour déterminer la première solution.
Étape 3.5.2
Ensuite, utilisez la valeur négative du pour déterminer la deuxième solution.
Étape 3.5.3
La solution complète est le résultat des parties positive et négative de la solution.
Étape 4
Étape 4.1
Remplacez toutes les occurrences de dans par .
Étape 4.2
Simplifiez le côté droit.
Étape 4.2.1
Simplifiez .
Étape 4.2.1.1
Simplifiez chaque terme.
Étape 4.2.1.1.1
Élevez à la puissance .
Étape 4.2.1.1.2
Multipliez par .
Étape 4.2.1.2
Additionnez et .
Étape 5
Étape 5.1
Remplacez toutes les occurrences de dans par .
Étape 5.2
Simplifiez le côté droit.
Étape 5.2.1
Simplifiez .
Étape 5.2.1.1
Simplifiez chaque terme.
Étape 5.2.1.1.1
Élevez à la puissance .
Étape 5.2.1.1.2
Multipliez par .
Étape 5.2.1.2
Additionnez et .
Étape 6
La solution du système est l’ensemble complet de paires ordonnées qui sont des solutions valides.
Étape 7
Le résultat peut être affiché en différentes formes.
Forme du point :
Forme de l’équation :
Étape 8