Algèbre Exemples

Transformer en un intervalle 2x+1<=-6 or 2x+1>=6
ou
Étape 1
Simplifiez la première inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 1.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 1.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 1.1.2
Soustrayez de .
Étape 1.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.1
Divisez chaque terme dans par .
Étape 1.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 1.2.2.1.1
Annulez le facteur commun.
Étape 1.2.2.1.2
Divisez par .
Étape 1.2.3
Simplifiez le côté droit.
Appuyez ici pour voir plus d’étapes...
Étape 1.2.3.1
Placez le signe moins devant la fraction.
Étape 2
Simplifiez la deuxième inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.1
Déplacez tous les termes ne contenant pas du côté droit de l’inégalité.
Appuyez ici pour voir plus d’étapes...
Étape 2.1.1
Soustrayez des deux côtés de l’inégalité.
Étape 2.1.2
Soustrayez de .
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1
Annulez le facteur commun de .
Appuyez ici pour voir plus d’étapes...
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 3
L’union se compose de tous les éléments contenus dans chaque intervalle.
ou
Étape 4
Convertissez l’inégalité en une notation d’intervalle.
Étape 5